INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED LINEAR SPACES

نویسنده

  • SEVER S. DRAGOMIR
چکیده

New upper and lower bounds for the p-angular distance in normed linear spaces are given. Some of the obtained upper bounds are better than the corresponding results due to L. Maligranda recently established in the paper [Simple norm inequalities, Amer. Math. Monthly, 113(2006), 256-260].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UPPER AND LOWER BOUNDS FOR THE p–ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS

For nonzero vectors x and y in the normed linear space (X ,‖·‖) we can define the p -angular distance by αp [x,y] := ∥∥‖x‖p−1 x−‖y‖p−1 y ∥∥ . In this paper we show among others that 1 2 ∣∣ ∣∣‖x‖p−1−‖y‖p−1 ∣∣‖x+ y‖− ( ‖x‖p−1 +‖y‖p−1 ) ‖x− y‖ ∣∣ αp [x,y] 1 2 ∣∣‖x‖p−1 −‖y‖p−1 ∣∣‖x+ y‖+ ( ‖x‖p−1 +‖y‖p−1 ) ‖x− y‖ ] for any p ∈ R and for any nonzero x,y ∈ X . Some reverses of the triangle and the con...

متن کامل

Quadratic $rho$-functional inequalities in $beta$-homogeneous normed spaces

In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le  left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) -  f(y)right)right|,  nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|

متن کامل

Grüss Type Discrete Inequalities in Normed Linear Spaces, Revisited

Some sharp inequalities of Grüss type for sequences of vectors in real or complex normed linear spaces are obtained. Applications for the discrete Fourier and Mellin transform are given. Estimates for polynomials with coefficients in normed spaces are provided as well.

متن کامل

On Some Discrete Inequalities in Normed Linear Spaces

Some sharp discrete inequalities in normed linear spaces are obtained. New reverses of the generalised triangle inequality are also given.

متن کامل

Large-volume open sets in normed spaces without integral distances

We study open sets P in normed spaces X attaining a large volume while avoiding pairs of points at integral distance. The proposed task is to find sharp inequalities for the maximum possible d-dimensional volume. This problem can be viewed as an opposite to known problems on point sets with pairwise integral or rational distances.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007